Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами (хотя ранее он был использован Гауссом, Лапласом и другими).
Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных и обеспечения оценки параметров модели.
Метод максимального правдоподобия соответствует многим известным методам оценки в области статистики. Например, вы интересуетесь таким антропометрическим параметром, как рост жителей России. Предположим, у вас имеются данные о росте некоторого количества людей, а не всего населения. Кроме того, предполагается, что рост является нормально распределённой величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста в выборке являются максимально правдоподобными к среднему значению и дисперсии всего населения.
Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия даёт уникальный и простой способ определить решения в случае нормального распределения.
Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе: